SWR Meter Connections
QRP SWR Meter


Ten Minute TransmitterMichigan Mighty Mite    Minimalist radio transmitters
: I had been playing with a couple of exceedingly simple transmitters, the so-called Ten-Minute Transmitter and the Michigan Mighty Mite. Both are single-transistor, very low power transmitters, bare minimum designs, so-to-speak. By connecting each unit’s RF output to a dummy load, and listening on a nearby receiver, it is easy to confirm that they do in fact transmit. When powered from a 9-volt battery, the Mighty Mite puts out about 60 milliwatts RMS (as ascertained by measuring RF voltage across a resistive load).

    According to Wikipedia, the term ‘QRP’ generally refers to 5 watts or less power in CW mode, e.g., Morse code. Interestingly, milliwatt-range transmitters have their own sub-designation. Transmitters that produce 1 watt or less are sometimes referred to as ‘QRPp’. Enthusiasts of this exeptionally low power range strive to make contact over impressive and occasionally spectacular distances, using minimal power. —But I digress. Making and testing these small transmitters caused me to wonder whether their output would suffice to produce meaningful readings on a power / SWR meter. That thought led to purchasing an inexpensive QRP SWR Bridge from Kits And Parts (.com). This small kit requires only an hour or two to assemble and test.


MicroammeterQRP SWR Bridge from KitsAndParts.com    Balancing the bridge: The last step in the KitsAndParts.com build instructions explains how to produce equal readings for the same power and load, whether connected in the forward or reverse direction. Each arm of the bridge has a variable resistor that can be trimmed to increase or decrease the value displayed on a DC microammeter (for a given RF input and load). After adjusting for a suitable reading in the forward direction, connect the RF source to the output (antenna) side of the bridge and a dummy load to the input; then adjust the ‘reverse’ trimmer until the meter displays the same value as it did for the forward-connected power and load.


    Calibration: By all rights a power meter should display units of power: watts or milliwatts, or, if you’re the power company, megawatts! Although the QRP SWR Hilltopper QRP Transceiverbridge was advertised for the range 5 to 100 watts there was a chance that it might also function down to the fractional-watt range of the one-transistor transmitters. To explore this possibility I adjusted both forward and reverse arms of the bridge to their maximum sensitivity points—trimpots nearly fully clockwise—before proceeding. The next step or goal was to interface the bridge with an Arduino Nano. The Nano platform could be used for reading voltage and displaying power in appropriate units, as well as Standing Wave Ratio.

    With a  5-watt transceiver1 supplying RF input, voltage at the microammeter connection point of the bridge was low enough to be connected safely to a Nano’s analog-to-digital (A/D) input. The bridge output was around half 3.3 volts. Thus, substituting 3.3 volts as the analog reference (Nano A-ref pin), in place of the default 5 volts, was expected to enhance the measurement’s digital resolution.

    The test transceiver’s RF power output varies with the power supply voltage. Thus by setting the DC input to different values, and recording A/D readings for each power supply level tested, it was possible to establish a correlation between A/D values (bridge output) and RF power (as calculated from peak-to-peak RF voltage across a 50-ohm resistive load).2

    Important note: The following table and accompanying linear regression graph have been revised to correct an error that was discovered after first posting this write-up. When raw A/D values were originally measured, the analogReference(EXTERNAL) specification had been omitted from the microcontroller sketch; hence the reference voltage was not stable. The sketch (see links below) has also been corrected. 

RF Power Calibration

    The preceding table contains just three measurement points. However, the xy-graph of power versus raw A/D (below) shows that a straight line through the points provides satisfactory accuracy for this limited measurement range. The calculator at https://www.socscistatistics.com/tests/regression/default.aspx was used to compute the line’s slope and intercept.

Lineaer regression for RMS power as a function of raw A/D

While it might have been better to define two lines, one for the the illustrated QRP range and another for the milliwatt range, at this stage of the project I was ready to move on to the user interface. (But see ‘QRPp addendum’ and subsequent paragraphs below.)
 

    Displaying power and SWR: At first a two-line (16×2) text-only LCD was used to observe raw A/D (calibration) readings, and for displaying measured RF power and SWR (topmost illustration). This non-graphic display interfaces via the i2c bus. I had previously interfaced the same type of LCD to the test transceiver itself (Hilltopper-40) in order to display tuned frequency and step, etc. It might be possible, I thought, to extend the Hilltopper’s MPU code again, this time to include power and SWR information, along with frequency, and so forth, using the same 2-line display. However, there was a hitch. Only one of the transceiver’s ATmega328P analog pins remained unassigned—marked as ‘spare’ in the schematic. All other analog channels were in use. I briefly considered multiplexing forward and reverse power data to the last available analog channel, but discarded this idea, and in its place began to entertain a more grandiose one!

Waveshare 2-inch LCD    Virtual meter: Why not paint a cross-needle meter face on a pixel-addressable device and have the display emulate an analog SWR meter? This idea seemed entirely feasible. It was similar in concept to my OLED-based magic eye simulation. Casting about for a suitable display, I took a $15 chance and ordered a Waveshare 2-inch color LCD (240×320) pixels. Two inches seemed about right—A QRP meter should be small, like other QRP devices.

    The Waveshare LCD module connects via the Serial Peripheral Interface and is furnished with a custom SPI cable. Somehow I had imagined programming this display using a rich graphics library, similar to the Adafruit GFX library that had been used for the magic eye sketch. This was a misapprehension, or rather a pipe-dream. On first exercising the Waveshare demo (slightly customized in the photo left) I became aware of how slowly the device paints, and soon realized that it would not be feasible to simulate cross-needles with real-time motion, at least not if relying on the Waveshare demonstration files for drawing functions.

Filled meter-barsRevised meter bars plus text    Meter bars: If the imagined cross-needle display could not be readily implemented, surely it would be possible to update graphic meter bars to reflect forward and reflected power, and SWR, in real time. Such a display would consist of horizontal rectangles, like progress bars, that fill up to an indicated value (photo left). Updating would be simple—fill more to the right when changing to a greater value, or erase to the left (i.e., fill with the background color) for a decreasing value. Alas, this much simpler plan was also too slow when the value to be displayed changed more than fractionally. Reluctantly I gave up the ‘fill’ concept and in its place made a single vertical mark at the position to be indicated (photo right). A 3-pixel wide mark was sufficiently salient, and at the same time could be painted or erased relatively quickly.

    In addition to labeled meter bars, the revised LCD screen geometry features a single row of text at the bottom. This part of the display was subsequently extended to include a numeric value for forward power, in addition to the illustrated SWR.
 

    Detecting key-down: It seemed that the display should change, maybe blank-out, during the receive part of transceiving. To test this idea, it was necessary to implement key-down detection, which in turn involved routing a cable from the transceiver to convey ‘Txen’ (transmit enable) and ‘Mute’ signals to designated Nano digital inputs. Although analog SWR meters do not disconnect during receive, modern ham radio transceivers do support selection of different virtual meters for the two parts of the transceive cycle. For example an S-meter may be displayed on receive, and ALC or power or SWR on transmit. However, this concept ran up against the same problem as updating meters. The Waveshare 2-inch LCD screen can not be repainted fast enough to switch between different transmit and receive displays, even if programmed to preserve the transmit-mode display for a brief interval after key-up. The dual-display idea was abandoned.  

SWR Bridge Simulator


    Simulating the bridge
: Every change to the display required modifying microcontroller code, though usually in a minor way. Having to repeatedly fire up and key the transceiver in order to test such changes became a chore. To speed things up I made a simulator consisting of two voltage dividers (50K trimmer potentiometers), one connected to the forward power analog input pin (A0) of the Nano and the other to the reflected power pin (A1). This simple expedient, which bypasses the transceiver and bridge, facilitated more efficient testing of code changes.

    Wrap-up: The project software (sketch or program) may be examined or downloaded from this page. It is important to realize that calibration constants are peculiar to the specific implementation described in these paragraphs. Adapting the sketch for a different SWR bridge would necessarily require calibration with the bridge that is to be connected. By the same token, it might be necessary to use a different analog reference voltage (A-ref) or to condition the bridge output level for connection with the MPU, etc. Also note that the LCD_Driver.h and GUI_Paint.h library files, cited in the accompanying sketch’s conditional compile directives, must be downloaded separately from Waveshare along with the accessory C++ font files. These Waveshare demonstration resources are not part of the project sketch download. The purpose of posting the sketch in its current form is to share implementation ideas, not necessarily for reproducing the project verbatim.
 
    When very low power one-transistor transmitters (first paragraph above) are tested, the 0 to 10 watt forward power meter bar only sometimes moves, and then barely away from zero. For these transmitters, the bottom line textual display reports power in milliwatts. Such low values are likely inaccurate—they are certainly highly variable. On the other hand it is possible to simulate ‘QRPp’ values in a reproducible way, using the A-ref voltage dividers (breadboard photo above). Perhaps also the bridge itself could be made more sensitive if intended chiefly for use in a milliwatt application.


Plug-in voltage divider    QRPp (addendum): After correcting the omission of the analogReference(EXTERNAL) statement in the sketch, it became feasible to set the A-ref voltage to less than 3.3 volts, in the hope of improving measurement sensitivity at lower power levels, and perhaps to test whether this concept could be applied to make reproducible measurements of the milliwatt transmitters’ RF power output.

    My first thought was to use a 1 volt Zener diode, but the smallest Zener on hand was marked 3 volts. According to https://skillbank.co.uk/arduino/measure.htm the Arduino A-ref pin has an internal resistance of 32K ohms. Therefore, it should be possible to use a voltage divider to derive a stable lower voltage reference from the Nano’s 3.3 volts. With two 330 ohm resistors to halve the voltage, the current draw would be only 5 ma. As a first step I installed a pin header on the Nano sub-board in place of the 3.3 volts-to-A-ref jumper, so that additional test voltages could be conveniently substituted for the originally calibrated one. The photo shows two 1% resistors configured to supply 1.65 volts to the A-ref pin. The third pin header pin connects to ground. Note that this female header plugs into the sub-board, not to the Nano itself, where its ground pin would align incorrectly with DIO 13.

Linear fit at high sensitivity    With A-ref = 1.65 volts the A/D range is roughly doubled. Five data points in the range 1.5 to 3 watts (RMS power) were used for calibrating at this sensitivity, and the fit remained essentially linear (figure right). To accommodate this lower power range the sketch was modified to include a new Boolean constant QRPp, which if initialized ‘true’ would substitute the enhanced sensitivity regression equation
in place of the default one (for example, ŷ = 0.01x - 2.91 for the particular bridge adjustment and 1.65 volt A-ref tested). This sketch revision may be examined or downloaded here. Once again it must be stressed that slope and intercepts listed in the sketch should be replaced with values obtained through calibration of the particular SWR bridge that will be used for measurement.

    Although it was claimed possible to reduce the analog reference to below the half-3.3 volt value for which a second regression equation was computed, I was curious as to whether this enhanced level of A/D sensitivity would suffice to register output from one of the milliwatt transmitters.

QRPp Test Setup

Key up currentKey down current    For this sub-study the ‘10-minute transmitter’ was powered from a constant-voltage bench supply at 9 volts. The transistor used was a 2N2222A—in this simple circuit different transistors of a similar type tend to oscillate differently. The key down power supply current (right) was 0.13 A. Thus the circuit consumes just over one watt key down. This observation is relevant to the feasibility of the SWR meter
s forward power reading, as obviously RF output power cannot exceed the DC input power, and RF voltage was not concurrently monitored.

 QRPp reading 193 milliwatts 
   Forward (RF) power readings varied between 193 and 211 milliwatts, while reverse power was below a detectable threshold. The image on the left is a zoom view of one such forward power reading. Clearly for such readings to be trusted it would be necessary to calibrate the milliwatt scale independently, by concurrently measuring RF voltage across the load. However, as previously hinted it could be more informative first to configure a still lower reference voltage, and test the associated regression equation for that A-ref value’s corresponding A/D range.


Milliwatt-level Power Measurement   

    
QRPps Another Boolean symbol was needed to distinguish the milliwatt range in the microcontroller code (sketch) so I added an ‘s’ to  QRPp, where the ‘s’ means ‘super’ QRPp—or maybe ‘ps’ stands for postscript. (These constants should eventually be replaced by switches.) From the graph reproduced above it is clear that the relationship between A/D readings and RF power is non-linear in this lowest power range. But OK, power is a function of voltage squared, and A/D numbers correlate with RF voltage, so the multi-point graph should curve upwards, as it does.3 Nevertheless, a straight-line fit is good enough for the purpose of displaying meter readings for forward power, because the whole setup lacks reproducible precision. RF power was computed after measuring peak-to-peak RF voltage across the 50 ohm load, same as for the 5-watt range calibration.   

    In truth I was surprised that this test worked. During the calibration process a radio receiver in the next room was tuned to the 10-minute Transmitter’s frequency so that a loud and clear tone could be heard on each key-down as the transmitter’s power-supply voltage was being stepwise decreased. At one point the indicator LED on the transmitter PCB went out and it took a moment to realize that the power supply had dropped below the LED’s minimum for illumination! Even at 1.5 volts (the lowest that the bench supply would indicate) the transmitter was being picked up clearly on the nearby receiver.

    At the outset it was not clear whether the SWR bridge from Kits and Parts (dot com) could be used to make milliwatt power measurements without additional modification. However, thanks to the fact that the Nano’s analog reference could accept a suitably low comparison value, milliwatt measurements were straightforward. The lowest RF power detected via the Nano’s A/D converter was 16 milliwatts RMS (confirmed through concurrent measurement of RF voltage), not bad for an inexpensive kit and small number of accessory components!

 
    Demo video: Low Power SWR Meter




Projects Home



1. The test source was a Four State QRP Group Hilltopper-40 transceiver. One of my two Hilltopper kit build projects (the 20-meter version) is described on this page. Later in the project, two other 5-watt range transceivers were also used for demonstration or validation and the very low power scale was calibrated using the ‘10-minute Transmitter’.

2.  RMS power was computed as peak-to-peak voltage squared divided by 8 times the load impedance. My consumer grade oscilloscope (Siglent 200 MHz) has a computer interface, which can display numeric values for measurements. It can also display automatic ‘cursor mode’ numeric measurements on screen, and of course, it is possible to count grids and multiply by the volts per division setting. In the example illustrated below, RF voltage was 11.4 peak-to-peak, so RMS power to the 50 ohm dummy load for this (later) QRPp test was 11.42
÷ (8 × 50) = 0.325 watts or 325 milliwatts.

Oscilloscope waveform measurements

The computation can be reversed if it is desired to compute the
peak-to-peak voltage that corresponds to a given RMS power and impedance. The reverse formula is Vp-p = √(8Z ∙ RMS power). For example, to set the Ten Minute transmitter to output 100 mW (0.1 watts), assuming the impedance is 50 ohms, aim for an RF voltage = √(8×50×0.1) = √(40) or approximately 6.3 volts peak-to-peak.

3.  It is simple enough to compute a quadratic for these data points. Begin by transforming the power data (milliwatts) to square roots and solve the linear regression through the transformed points. For the given data, this procedure yields ŷ = 0.0256x + 3.10256 (left part of illustration below)
. Next square this equation to obtain ŷ² (milliwatts) = .000655x² + .15885x + 9.6258, where x stands for raw A/D readings (right in illustration). Once again, this numerical solution is only an example. The relationship between A/D readings and RMS power depends on the specific experimental setup, especially the bridge calibration and analog reference value used.

Linear fit to square roots and Quadratic fit to data




Project descriptions on this page are intended for entertainment only. The author makes no claim as to the accuracy or completeness of the information presented. In no event will the author be liable for any damages, lost effort, inability to carry out a similar project, or to reproduce a claimed result, or anything else relating to a decision to use the information on this page.